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Abstract. Localized carriers can contribute to charge transport in a weak electric field through
thermally activated hopping. If the electric field is sufficiently strong, the potential barrier
vanishes and the transport acquires band-like character. In the case of small polarons this
corresponds to their dissociation. We propose a phenomenological model which describes this
transition. This model is based on the assumption that charged classical particles, which are
localized in a potential well, can be thermally excited by phonons, and dissipate their acquired
kinetic energy. Taking the particles’ inertia into account we find a decrease in the strength of
the above-mentioned transition field and a hysteresis in the current–voltage relation for certain
parameter ranges.

1. Introduction

During the last two decades, the investigation of the localization behaviour of electrons
in strong electric fields has received a great deal of attention, both theoretically and
experimentally. In the theory of weak localization, self-consistent equations of the
Vollhardt–Wölfle type are derived [1–8] as well as exact solutions for one-dimensional (1D)
systems [9]. The transport in systems with strong localization is dominated by hopping
mechanisms. This includes Anderson-localized carriers in disordered systems [10–16] as
well as small polarons in crystals [17, 18], which is the focus of our paper.

The influence of the electric fieldF on the current densityj in the hopping regime
is generally taken into account by decreasing the potential barrier by a value of the order
of eF R̄, where R̄ denotes the hopping distance. In this case the hopping probability
is proportional to exp(ceF R̄/kT ) (c is a numerical coefficient). The main difficulty for
disordered systems consists in applying an averaging procedure (for details see [19]).

For small polarons in crystals, one obtains as the current–voltage characteristic in a
simple two-site approximation [17]

j ∝ sinh

(
eFλ

2kT

)
exp

(
−Ea
kT
− (eFλ)2

16EakT

)
(1)

whereλ is the lattice constant andEa the activation energy for hopping of a small polaron.
Equation (1) is valid only for fields that are not too high, namely forF 6 F ′c, where

F ′c = 4Ea/eλ. (2)

In a larger field, the hopping barrier vanishes and band-like transport sets in, superseding the
hopping transport. Strictly speaking, atF = F ′c the polaronic state will dissociate, i.e. the
electron will lose its cloud of phonons. The question of the dissociation of small polarons
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in an electric field was experimentally investigated in [20]. The materials Co1+xCr2−xO
and Co1−xLi xO were found to possess a discontinuity (breakdown) in the current–voltage
relation at a threshold field strengthF ′c = 104–105 V cm−1, i.e. a transition from a state
of low conductivity to a state of high conductivity. If the field is lowered again, the low-
conductivity state is regained only after a fieldFc < F ′c is reached, i.e. the transition between
the two conductivity states shows a hysteretic behaviour. A similar effect has been observed
in the amorphous oxides Ta2O5 and Nb2O5 [21].

The attempt to create a rigorous microscopic theory of charge transport in the model of
small polarons including their dissociation proved to be complicated [18], since one has to
describe the transition between localized electronic states and plane waves. In [18] it was
noted, that, as the hopping distance of the polaron increases with the field, the task changes
from a two-site to a multi-site one. In this context one has also to note the series of studies
(see, e.g., [22–25]) concerning the instability of the large polaron in an electric field. If the
field is increased in a system of large polarons so that the drift velocity reaches a critical
value (of the order of the sound velocity), then the interaction of a classical particle with
the phonons becomes impossible. This effect can be interpreted as the dissociation of the
polaron state.

In this paper we propose a simple phenomenological model which allows us to describe
the crossover between hopping and band-like transport in an electrical field. The model
is based on the picture of dissipative motion of a charged classical particle in a lattice
potential, comprised of potential barriers between neighbouring sites, under the influence
of an electric field. In a sufficiently weak field, the presence of these potential barriers
leads to the localization of the particles on the lattice sites. They can be spatially displaced
only by a random force (interaction with phonons). This transport mechanism has hopping-
like character. AtF = F ′c, the potential barrier vanishes, and the motion of the particle
becomes unbounded. The velocity does not diverge due to energy dissipation and the
transport acquires band-like character, described by the classical Drude formula. This
model, despite its extreme simplicity, allows us to describe both limiting cases—the hopping
transport and the band-like motion—and the crossover between these two cases. This model
reminds us of the method used to describe the dynamics of vortices in Josephson-junction
arrays of type II superconductors [26, 27]. Although the main concern of this paper is the
problem of the dissociation of the small polaron in an electric field, the results obtained are
probably applicable to other systems with strong localization and activated transport as well
(e.g. disordered media with Anderson localization).

The primary result of this paper is the description of the transition between the low-
and high-conductivity states at a certain critical fieldFc, which for dissipation that is not
too large and a large mass of the localized state can be considerably weaker than the critical
field F ′c, given by (2). This effect is due to the fact that at non-zero temperature the
dissociation of the polaron state takes place at a field for which there are still potential
barriers between the sites, but they are overcome by the particle due to its inertia. As in
the case for Josephson vortices, this crossover is accompanied by hysteretic effects, which
are especially pronounced at very low temperatures.

2. The phenomenological equation of motion

The principal idea of the method set forth below consists in the introduction of a time-
dependent collective coordinate for the centre-of-mass motion of the localized particle
R(t). This approach is also used to describe the motion of large polarons in strong electric
fields [24, 25]. In this case, the collective coordinate is usually introduced by taking the
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classical limit of the equation for the Wigner distribution function. We will use the classical
description right from the beginning and determineR(t) in the following way. We consider
the HamiltonianH of an electron–phonon system, and restrict ourselves to the adiabatic
approximation (i.e. we neglect the kinetic energy of the lattice subsystem). Furthermore,
we only consider the one-electron and one-band approximation. This means, in particular,
that the occupation numbersnm of the sitesm obey the relation∑

m

nm = 1. (3)

Now one has to minimize the total energy corresponding toH for a given value of the
centre-of-mass coordinate

R =
∑
m

Rmnm (4)

whereRm denotes the radius vector of sitem. Technically, the constraints (3) and (4) can
be taken into account, e.g., by introducing Lagrange factors—the chemical potentialµ and
the ‘electric field’Φ. We denote the quantity obtained by this procedure byŨ (µ,Φ):

Ũ (µ,Φ) = 〈H 〉 −
∑
m

(µ+ eΦRm)〈nm〉. (5)

Using the relations

∂Ũ(µ,Φ)
∂µ

= 1
∂Ũ(µ,Φ)
∂Φ

= eR

we obtain the quantitiesµ andΦ as functions ofR. This allows us to express the adiabatic
term Ũ (R) of our electron–phonon system as a functional of the centre-of-mass coordinate:

Ũ (R) = Ũ [µ(R),Φ(R)] + µ(R)+ eRΦ(R).

This programme, in particular, is performed in [28] for a two-site model of small
polarons. Finally, the quantity obtained,Ũ (R), has to be minimized with respect to lattice
displacements. We denote this minimized energy byU(R). This quantity plays the central
role in the calculational method proposed below. It describes the potential energy for the
motion of a localized charge carrier and is minimal at the pointsR = R0, whereR0 denotes
the coordinates of the localization centres.

The implementation of the proposed procedure to determine the effective potential
energy is very intricate, as it requires one to solve the Schrödinger equation for an electron
in an electrical ‘field’ Φ in the presence of arbitrarily large lattice displacements. The
appendix gives an example of such a calculation for small polarons for a vanishingly small
value of the resonance integral. In [27] a similar calculation was carried out for pinned
Josephson vortices. It is more feasible to introduce the potentialU(R) phenomenologically,
provided that certain statistical properties of it are known. For small polarons in crystals, as
we will see below, it is sufficient to know two of its properties: owing to the translational
symmetryU(R + G) = U(R), whereG denotes a translation vector of the crystal, the
(site-invariant) height of the potential barrierEa can be introduced. The minima of the
functionU(R) coincide with the lattice sites.

The introduction of the potentialU(R) permits one to phenomenologically formulate
the equation of motion of a localized particle in an external electric fieldF , which with the
introduction of a random force gives the form of a Langevin equation:

m?R̈+ f(Ṙ)+ dU(R)

dR
− eF = ξ(t) (6)
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wherem? denotes the effective mass of the particle. The termf(Ṙ) describes the friction
for moving in a dissipative medium and its functional form deserves further consideration.
We start with the case of a strong electric field:

eF �
∣∣∣∣dU(R)dR

∣∣∣∣
i.e. the moving electron does not ‘feel’ the spatial variation of the potential. In this case the
problem considered is equivalent to the problem of large polarons and the corresponding
Langevin equation has been investigated in numerous papers [23–25]. If the dissipative
bath manifests itself in essentially elastic scattering on impurities, then, to a good degree of
accuracy, the friction function is linear in the velocity:

f(Ṙ) ≈ ηṘ η = m?

τ
(7)

whereτ is the elastic relaxation time. Scattering on phonons is more complicated. Here,
the utilization of the adiabatic approximation leads to divergencies [29, 30]. The term
f(Ṙ) generally has a non-Markovian character, which avoids the divergencies. In classical
calculations the Markovian limit is usually taken, if one restricts the considerations to
appropriate timescales.

The linear approximation (7) is employed in the investigation of large polarons, which
interact with optical phonons of frequencyω0, in the limit of a small drift velocityṘ < w

(w = ω0/kmax , kmax being the largest wave vector in the Brillouin zone). ForṘ > w the
classical limit of the Fr̈ohlich model yieldsf(Ṙ) ∝ ln(Ṙ/w) (see, e.g., [25]). The random
forces do not play a significant role in this range of the electric field.

The situation is very different for small polarons in the range of electric fields that
are not too strong, when the potential landscape has the determining influence and leads
to a hopping mechanism for the transport. But, in the model of small polarons, there is
no unambiguous recipe for dividing the force into random (fast) and friction (slow) forces
and then obtaining the Langevin equation. The role of ‘friction’ is played here by thermal
relaxation processes of the electron at a site [28]. After all, with the elucidation of this
problem, a consequent construction of a theory of small polarons would be within reach.
These dissipative processes are caused by the dispersion of the optical phonons1ω. As
we will see below, the current–voltage characteristic considered by us is not too sensitive
to the actual form of the friction functionf(Ṙ). But if one uses the linear approximation,
equation (7), then the relaxation time

τp ≈ 1

1ω

(
Ea

kT

)2/3

has to be invoked [31].
Now we consider the limits of applicability of the adiabatic approximation which lie

in the nature of the effective potential obtained,U(R). Firstly, the applicability of this
approximation is strongly related to the value of the dimensionless parameter

η2 = J 2/[h̄ω0(EakT )
1/2]

(J denotes the resonance integral, andω0 the frequency of the optical phonons) [28]. The
state of adiabatic polarons is realized forη2 � 1. Secondly, equation (6) has adiabatic
character, i.e. the equation assumes that the polaron responds instantaneously to an electron
displacement. The response of the phonon subsystem to the electron displacement is
determined by the characteristic time [32]

t̄ = h̄/[(EakT )1/4(h̄ω0)
1/2].
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Thus, the adiabatic approximation is valid only in the limit of a small polaron drift velocity,
i.e. for Ṙ � λt̄−1. The formation of the potential landscapeU(R) is more and more delayed
for increasing velocity of the polaron, and does not happen at all in the limitṘ > λt̄−1.
Basically, this corresponds to the dissociation of the polaron state in an electric field.

The central approximation of our paper is the assumption of an adiabatic motion of
small polarons. We assume that non-adiabatic level transitions are unimportant, not only in
weak electric fields (corresponding toη2� 1), but also in strong electric fields. Of course,
a possible alternative model of polaron dissociation would be the increase of the transition
probabilities between the adiabatic levels [28] with increasing field due to the increment
of the polaron velocity near the position of the avoided level crossing. This causes the
behaviour of the polaron to become non-adiabatic at a certain value of the electric field.
This transition could be responsible for the hysteretic phenomenon at the polaron dissociation
(see also section 5).

3. Hopping transport and band-like motion

In the following, we restrict ourselves to the motion of a small polaron in an ordered one-
dimensional (1D) chain, whereU(R + λ) = U(R). According to (6), if the particle is
localized at any site before the electric field is applied, then the particle will not move to
another site as the electric field is increased in the absence of random forces, as long as the
potential barrier is present, i.e.

eF 6 max
dU

dR
≈ AEa/λ. (8)

HereA is a numerical coefficient, which depends on the actual form of the potentialU(R).
It is assumed that there is only one characteristic length, namely the lattice constantλ, and
only one characteristic energy, the barrier heightEa. The effective potential (A4), which is
derived in the appendix, yieldsA = 4. The inequality (8) determines the critical fieldF ′c,
equation (2), below which the current vanishes in the framework of (6) (without random
forces).

The random forceξ(t) in (6), which is connected with scattering of polarons on phonons,
will be described in the following way. The particle absorbs a phonon of energyε0 at the
time t = 0 and obtains an initial velocity

v = ±√2ε0/mp

wheremp denotes the effective massm? of the polaron state, ‘+’ corresponds to motion
parallel and ‘−’ to motion anti-parallel with respect to the external field. This can lead to
three types of motion.

(i) If the phonon energy is sufficiently small,ε0 < Ea − (eFλ)/2, the particle cannot
escape from the potential well, starts a damped oscillation and finally thermalizes at the
initial lattice site.

(ii) If ε0 > Ea − (eFλ)/2, the particle overcomes the potential barrier and moves
through the crystal. During the motion it gradually loses energy due to the friction and
finally localizes at a site (which is, say, the site numberedl, where the initial site is site
l = 0). This happens if the field is not so strong that it compensates for the energy loss.
Obviously, the distance covered by the motion depends on the initial velocity,l = l(v).
For sufficiently small friction and a strong field, a particle which initially moved against the
field (v < 0) may change its direction and one might even find thatl(−v) > 0. But this
possibility will not be considered in the following.
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(iii) Finally, the excited particle will never again localize, but assumes a state of stable
stationary drift motion in the field. In this case, band-like transport supersedes the hopping
transport.

We start with the case of sufficiently small fields, where the motion is hopping-like. In
this situation, the current arising from collisions with phonons can be determined from

j = enν[ρ(v)− ρ(−v)] (9)

wheren is the electron concentration,ν is the frequency of the collisions with phonons,
andρ(±v) = ±λl(±v) is the distance covered by the motion following a collision with a
phonon (with and against the field). Here it was assumed that the collisions with phonons
are sufficiently rare thatν δt < 1, where δt denotes the characteristic thermalization
time after a collision (see below). With increasing field, the distanceρ becomes larger,
and correspondingly the characteristic timeδt increases, so the above-proposed scheme
of Markovian transitions breaks down. The polaron will not come to rest between two
subsequent collisions with phonons and the jumps will now assume a non-Markovian
character. In this case a specific transport type occurs, in which the electron is displaced
due to the impact of random forces, but it does not thermalize at a site in the time between
collisions. The smaller the friction, the lower the fields at which the transition to non-
Markovian processes takes place. At very small friction, non-Markovian hops occur even
in the limit of very smallF (in linear response theory). Non-Markovian hops of small
polarons in the Ohmic regime have been investigated in [31].

In the following we restrict ourselves to Markovian transitions, i.e. our calculation is
applicable only far away from the critical field at which the length of the jump diverges, and
the transition to a band-like motion takes place. Below we give a quantitative criterion for
the applicability of the model of Markovian transitions (see (37)). In passing, we note that
in this transition region a rigorous calculation is burdened not only by the non-Markovian
character of the processes. Additionally, the mechanism of friction, i.e. the functional form
of f(Ṙ) in (6), changes and the effective mass changes fromm? = mp (polaronic) to
m? = me (electronic).

Averaging (9) over the initial velocities, we obtain

j = enν mp
2kT

∫ ∞
0

dv v exp

(
−mpv

2

2kT

)
[ρ(v)− ρ(−v)]

= enν 1

2kT

∫ ∞
0

dε0 exp

(
− ε0

kT

)
[ρ+(ε0)− ρ−(ε0)] (10)

whereρ±(ε0) = ρ(±v).
Thus, the problem is reduced to the determination of the hopping lengthρ±(ε0) using

equation (6), where the influence of the random forceξ(t) is replaced by the initial conditions

R
∣∣
t=0 = R0 Ṙ

∣∣
t=0 = ±

√
2ε0

mp
(11)

with R0 the equilibrium position in the zeroth potential well determined by

dU/dR
∣∣
R=R0
= eF.

4. Current–voltage characteristics in the hopping regime

The situation is very simple for weak electric fields and sufficiently strong damping, in
which case only hopping between nearest neighbours occurs. Then onlyρ± = 0, ±λ is
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possible and according to (10)

j = enλν

2kT

[∫ ∞
Ea−eFλ/2

dε0−
∫ ∞
Ea+eFλ/2

dε0

]
exp

(
− ε0

kT

)
= enλν exp

(
−Ea
kT

)
sinh

(
eFλ

2kT

)
.

(12)

Comparing this expression with the microscopically derived mobility of adiabatic polarons
[19, 28, 32], one findsν = ω0/2π for the frequency of the collisions with phonons, where
ω0 is the optical phonon frequency. The relation (12) is identical to the current–voltage
characteristic (1), except for the anomalous factor exp[−(eFλ)2/16EakT ], which is absent
from (12).

Now we turn to the case of hopping to distant sites, which occurs if the damping is
weak or the electric field is strong. Using the initial conditions (11), the equation of motion
(6) can be integrated:

mpṘ
2

2
+ U(R)− U(R0) = ε0+ eF (R − R0)−

∫ R

R0

dR′ f
[
Ṙ(R′)

]
. (13)

We introduce the notion of the particle energy at the equilibrium position at sitel,
R0l = R0+ λl:

εl = 1

2
mp

[
Ṙ(R0+ λl)

]2
. (14)

The energy at the sitel = 0 is identical to the energy of the absorbed phononε0. If we set
R = R0l andR = R0l+1 in (13) and subtract one of the equations obtained from the other
one, we get a recurrence relation for the energy loss of the polaron between neighbouring
lattice sites:

εl+1− εl = λ[eF − L(εl)] (15)

where

L(εl) = 1

λ

∫ Rl+1

Rl

dR f [Ṙ(R, ε0)] = 1

λ

∫ R0+λ

R0

dR f [Ṙ(R, εl)]. (16)

The expressionṘ(R, ε) denotes the velocity of the particle at the pointR for an initial
energy ofε, and the relationṘ(R + R0n, ε0) = Ṙ(R, εn) was used in deriving (16).

In the case considered, of hopping to distant sites, the energy change between neigh-
bouring sites is small, and, applying the substitutionεl → ε(R0l) → ε(R), the recurrence
relation (15) can be replaced by a differential equation:

dε(R)

dR
= eF − L(ε) ε(0) = ε0. (17)

This equation is solved by

R(ε) =
∫ ε0

ε

dε′

L(ε′)− eF . (18)

Relation (18) holds for movement in the direction of the field. For a movement against the
field one has to substitute−F for F .

The energy of the particle which it possesses at the potential minimum of a well
decreases as it moves from site to site due to the friction, and finally reaches the minimal
valueEa ∓ (eFλ)/2 (‘−’ and ‘+’ for the motion with and against the field, respectively).
Thereafter, it thermalizes in the corresponding well. Thus, we obtain the hopping distance

ρ±(ε0) =
∫ ε0

Ea∓eFλ/2

dε

L±(ε)∓ eF . (19)
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The quantitiesL± differ in the sign of the electric field. Putting (19) into (10), integrating
partially, and taking the equalityρ±(Ea∓ 1

2eFλ) = 0 into account, we obtain the following
expression for the current:

j = enν
{∫ ∞

Ea−eFλ/2
dε

exp(−ε/kT )
L+(ε)− eF −

∫ ∞
Ea+eFλ/2

dε
exp(−ε/kT )
L−(ε)+ eF

}
. (20)

Now it remains to determine the damping functionL±(ε), equation (16). In the limit
of weak friction, it can be obtained by integrating (13):

L±(ε) = 1

λ

∫ λ

0
dR f

[√
2

mp
ε − U(R + R0)+ U(R0)± eFR

]
. (21)

Below we will consider the case of electric fields that are not too strong, when
eFλ � Ea and, thus,L+(ε) = L−(ε) ≡ L(ε). Only in this case does hopping motion
actually take place, as we will see later. Furthermore, we can assumeR0 = 0, i.e. we
neglect the displacement of the potential minimum due to the electric field. With these
assumptions the following quantity can be introduced:

K(ε) ≡ L(ε + Ea) = 1

λ

∫ λ/2

−λ/2
dR f

(√
2

mp
[ε − U(R)]

)
. (22)

Here, the origin of the position coordinate is moved to the position of the maximum of the
potentialU(R) (R→ R + λ/2), and the energy origin to the value at the maximum of the
potential (U(0) = 0, U(R) 6 0). The expression (20) for the current now takes the form

j = enν exp

(
−Ea
kT

)∫ ∞
0

dε exp

(
− ε

kT

){
exp[eFλ/(2kT )]

K(ε)− eF − exp[−eFλ/(2kT )]
K(ε)+ eF

}
.

(23)

The damping functionK(ε) increases with increasing energy, and so the condition for the
applicability of the approach considered readsK(0) > eF . Consequently, there is a critical
value of the electric field

eFc = K(0) (24)

whose attainment leads to a diverging hopping length, and finally to the transition of the
hopping transport to band-like transport. If the potentialU(R) is a smooth function and
there is only one characteristic energy, namely the height of the barrierEa, and the friction
function can be used in the linear approximation, equation (7), then

eFc ≈ Bηp
√

2Ea/mp (25)

whereB is a numerical coefficient andηp denotes the friction coefficient in the range of
hopping transport. For weak damping (largeτ ) and a large mass of the polaron,eFcλ� Ea,
which justifies the assumptions used in calculatingL±(ε). Additionally, for this critical field,
Fc � F ′c (see (2)).

Since we are interested in the case whereEa � kT , the largest contribution to the
integral overε in (23) comes from small values ofε. In the linear approximation of the
function f (Ṙ) we find

K(ε) ∼= eFc
(

1+ ε

EaB
√

2C

[
ln
CEa

ε
+ 1

])
(26)

where the numberC is defined by

d2U/dR2
∣∣
R=0 = −Cλ−2Ea.
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Taking into account the conditionEa � kT and (23), the following expression for the
current–voltage relation in the hopping regime is obtained:

j ∼= nνkT

2F0
exp

(
−Ea
kT

){
exp

(
−eFλ

2kT
+ F + Fc

F0

)
Ei

(
−F + Fc

F0

)
− exp

(
eFλ

2kT
+ Fc − F

F0

)
Ei

(
−Fc − F

F0

)}
. (27)

Here, Ei(x) is the exponential integral function andF0 is a characteristic electric field:

F0 = Fc kT

EaB
√

2C

[
ln
CEa

kT
+ 1

]−1

� Fc. (28)

Far away from the transition, when(Fc − F)� F0,

j ∼= 1

2
nνkT exp

(
−Ea
kT

){
exp(eFλ/2kT )

Fc − F − exp(−eFλ/2kT )
Fc + F

}
. (29)

We note that the expressions (12) and (29) for the current do not coincide in the linear
approximation in the electric field. The reason for this is that the traditional expression (12)
for small polarons corresponds to the case of nearest-neighbour hopping at large friction,
whereas (29) corresponds to hopping to distant sites, which takes place for small friction.

Near the transition, according to (27),

j ∼= nνkT

2F0
exp

(
−Ea
kT
+ eFλ

2kT

)
ln

F0

Fc − F . (30)

5. Current–voltage characteristics in the region of band-like transport

If the electric field is larger thanFc, then the electronic motion is unlimited even in the
absence of random forces. In this region of the field, a stationary asymptotic drift motion is
established, in which the energy loss due to friction over a distance of one lattice spacing
is exactly compensated by the energy gained over this distance due to the electric field. If
2 denotes the time needed to move one lattice period, then the stationary current has the
form

j = en λ
2
. (31)

The period2 can be determined from the following considerations. The condition of energy
balance reads (see (13), (16), (22) and (26))

eF = K(ε) ∼= eFc
(

1+ ε

EaB
√

2C

[
ln
CEa

ε
+ 1

])
. (32)

Here, we assumed that the friction function admits the linear approximation (7), andε

denotes the kinetic energy of the electron at the potential minimum in the stationary regime
of motion. Equation (32) relatesF andε in the range of electric fields larger thanFc and
for (F − Fc)� Fc. On the other hand, the relation between2 andε reads

2 =
√
me

2

∫ λ/2

−λ/2

dR√
ε − U(R)

∼=
√
me

CEa
ln
CEa

ε
. (33)

The equations (31)–(33) determine the current–voltage characteristics in the region of the
field immediately above the threshold. Up to double-logarithmic precision, we obtain

j ∼= en
√
CEa

me
ln−1

(
BC
√

2CFc
F − Fc

)
. (34)
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For F > F ′c (see (2)), the electron can get over the barrier regardless of its inertia. In this
regime not only can the random force be omitted from (6) but so also can the second time
derivative. Then,

j ∝ √F − F ′c F − F ′c � F ′c. (35)

For an even further increased field, the term dU/dR in (6) can be omitted, as well. This
results in the transition to the linear regime,j = e2nτeF/me, if the drift velocity is still
smaller than the critical valuew, which is determined by the instability for large polarons
(see the discussion following (6)). Furthermore, we assumed that a renormalization of the
particle mass and the relaxation time takes place (mp → me, τp → τe).

The above-stated considerations lead for small temperatures (in the absence of random
forces) to a hysteretic current–voltage relation, similar to the phenomenon which occurs in
the theory of the motion of Josephson vortices [26]. In an increasing field, the current is zero
in the range 0< F < F ′c. Thereafter, the current–voltage relation either follows (35) under
neglect of the kinetic energy term, or, if the inertia is taken into account, the current leaps
from zero to the value determined by (34). If, on the other hand, the field is decreased,
the current is not equal to zero in the intervalFc < F < F ′c if the inertia is taken into
account. However, the model of classical motion for small polarons considered here is not
applicable to the region of low temperatures (see [32]). But a hysteresis will nevertheless
occur in small-polaron models at higher temperatures due to a different mechanism.

When the field is lowered from aboveFc, the drift velocity of the charge carrier at
F = Fc is still so large that the crystal lattice is unable to form a polaron well (see
section 2). Thus, the current stays on the band-like branch and has Ohmic character. This
is the case until the drift velocity reaches a critical valueλ/t̄ , corresponding to a field
strengthF ′′c ≈ λme/(eτet̄) < Fc. Then, the polaron well starts to be formed, which further
lowers the drift velocity, and the current decreases in an avalanche-like fashion to the
hopping branch. This yields a hysteresis betweenF ′′c andFc, which is of a fundamentally
different nature to the above-described hysteresis betweenFc andF ′c, which occurs only for
low temperatures.

6. Results and discussion

The proposed model allows us to describe the transition from hopping conduction to band
transport. This transition takes place at a critical fieldFc, which, for low friction and large
particle mass, is lower than the fieldF ′c that is required to compensate the potential barrier
between neighbouring sites. The physical reason for the occurrence of the unbounded
motion while there is still a barrier lies in the inertia of the particle, which can enable the
electron to cross the subsequent potential barriers after having once obtained enough energy
to leave the initial site, if the friction is sufficiently weak. The critical field can even be so
small that the relationeFcλ � kT is valid. Then, in the hopping regime, i.e. forF < Fc,
the current–voltage characteristic reads

j = nνkT exp

(
−Ea
kT

)
F

F 2
c − F 2

. (36)

Here, the factor exp(eFλ/2kT ), which is characteristic for hopping, is absent.
Due to the non-Markovian crossover, the current–voltage relation (30) in the hopping

region and (34) in the band-like transport region do not coincide at the critical fieldF = Fc.
Because the regime of non-Markovian processes secures a continuous transition between
hopping and band-like transport, we estimate the width of this transition region. To this
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end it is necessary to find the thermalization timeδt of the charge carrier after it has been
excited by a phonon. In the continuum approximation, the velocity of the particle at the
point R can be described by

Ṙ−1(R) =
√
mp

λ
√

2

∫ λ/2

−λ/2

dR′√
ε(R)− U(R′)

whereε(R) denotes the energy of the particle, relative to the potential maximum. Then,

δt ∼=
∫ R+

0

dR

Ṙ(R)
=
∫ ε0−Ea

0

dεṘ−1(ε)

ηpK(ε)− eF
∼= mp

ηp
ln

{
1+ Fc

Fc − F
ε0− Ea
EaB
√

2C

[
1+ ln

CEa

ε0− Ea

]}
.

Here we used (17), (22) and (26). We are interested in the collisions with phonons with an
energy larger thanEa. The averaging of the inequalityν δt � 1 over these phonons yields
the condition of applicability of the Markovian description of transport:

Fc − F
Fc

� kT

Ea
ln

(
Ea

kT

)
exp

[
− 1

ω0τp
exp

(
Ea

kT

)]
. (37)

The numerical coefficients are omitted here, the relationsηp = mp/τp and ν = ω0/2π
are used, and the polaron relaxation timeτp is defined in section 2. Thus, the transition
region is very narrow for sufficiently large values of the parameterEa/kT . Precisely this
circumstance also leads to the fact that the transition from hopping to band-like motion has
the character of a sudden (discontinuous) increase of the current, which reminds one of an
avalanche breakdown.

We numerically calculated the current–voltage relation using (6) and the potentialU(R)

of the form (A4). For this potential the above-introduced numerical coefficients areA = 4,
B = 1/2 andC = 8. The primed critical field becomesF ′c = 4Ea/(eλ).

The friction coefficient is approximated asη = m/τ , wherem is the electron or polaron
mass, respectively, andτ is of the order of 10−11 s. For an excitation by optical phonons,
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Figure 1. The numerically computed current (in arbitrary units) showing the transition from
hopping transport (full curve) to band-like transport (dotted curve) atF = Fc. Note thatFc is
about three orders of magnitude smaller thanF ′c (experiments suggest two orders of magnitude).
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ν is of the order of 1013 s−1. The parameters for the numerical computation are chosen
as λ = 5 Å, F ′c = 107 V cm−1, kT = 0.2Ea, mp = 100me and τp = 10−11 s. This
yieldsFc = 6× 103 V cm−1, Ea = 1.25 meV andT = 290 K. The remaining parameters
are τe = 10−12 s andν = 1013 s−1 for figure 1, whereas figure 2 is obtained by using
τe =
√

10× 10−12 s andν = 1014 s−1.
The full curves correspond to the low-field (hopping) solution, and are calculated through

integration of the ODE and computing the integral (10) numerically. Clearly, the current
diverges nearFc. The dotted lines show the band-like solution. They are calculated using
the parametersme and τe instead ofmp and τp, and represent the iteratively determined
steady-state solution of (6). The dashed line in figure 2 shows the approximation according
to (27), which is reasonably close to the exact solution.

The reversible breakdown in the current–voltage characteristic, which is described
here, was experimentally observed for the oxides Co1+xCr2−xO4 and Co1−xLi xO at fields
Fc = 104–105 V cm−1 in [20], and was interpreted by the authors as a delocalization
phenomenon for small polarons. We suppose that the observed hysteretic current–voltage
relation corresponds to our proposed hysteresis withFc/F

′′
c
∼= 1.15 in this case. An

important fact, which favours the applicability of our considerations to this experiment,
consists in the relatively small value of the critical field, which is experimentally found to
be two orders of magnitude lower than the fieldF ′c ≈ 107 V cm−1 at which the potential
barrier vanishes.
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Figure 2. The numerically computed current for a different parameter set to that of figure 1 (see
the text). The full curve represents the hopping current, and the dotted curve is for band-like
transport. Additional to the breakdown atFc (equal to 6×10−4F ′c), there is now a hysteresis in
the current–voltage characteristic. The broken curve represents the approximation (27) for the
hopping regime. The hysteresis is caused by the non-adiabatic behaviour of the polaron near
the dissociation point. The polaron velocity reaches the critical valueṘc = λt̄−1 = jc/en in an
increasing field atF = Fc, the behaviour becomes non-adiabatic, the polaron well vanishes and
the current–voltage characteristic jumps to the Ohmic branch. The velocity is still larger thanṘc
atF = Fc in a decreasing field, and the current remains Ohmic forF < Fc. Finally, atF = F ′′c ,
the velocity becomeṡRc, a polaron well forms and the current–voltage characteristic jumps to
the hopping branch. The arrows indicate these transitions schematically. The horizontal line
represents the (here arbitrarily chosen) value ofṘc.
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The calculated band-like current shown in figure 2 does not become zero atF = Fc,
which contradicts (34). This is caused by the mass and relaxation time renormalization
around the transition region. For a fixed relaxation time, the critical field isFc ∝ √m
according to (25). Thus, under the assumption that the relaxation time renormalization
is rather small compared to the effective-mass renormalization,Fc is formally smaller for
band-like motion than for hopping motion. This can also cause the current to stay on
the upper branch of the current–voltage relation when the electric field is lowered from
aboveFc. In a narrow transition region aroundFc, complex processes take place, e.g. non-
Markovian hops, mass and relaxation time renormalization, and non-adiabaticity of the
motion, which cannot be described within our proposed model. However, all of these are
processes with positive feedback, so the transition between hopping and band-like transport
is very fast and resembles an electrical breakdown. For band-like motion, when the term
dU/dR can be omitted in (6), the transport can be described by the methods of large-polaron
theory [22–25].

The calculations in this paper have been carried out for small polarons in an ordered
1D chain. For three-dimensional (3D) crystals, in which the current path forms a straight
line, the current–voltage relation is qualitatively equivalent to that in the 1D case. The
basic qualitative results of this paper (the decrease of the threshold field due to inertia,
hysteresis, transition from an activated temperature dependence to a non-activated one and
sudden increase of the current with increasing field near the threshold) should be valid even
for disordered 3D systems which show activated transport. However, in disordered systems,
where the potential energyU(R) is a random relief, the current path is strongly bent as
shown by percolation theory. Therefore, the 3D (and 2D) system is essentially different
from the 1D system. In disordered media with current percolation in a strong electric field,
the carriers are pooled before the highest (critical) barrier, which forms a ‘bottle-neck’. In
this situation the Fermi statistics starts to become essential even in the case in which the
electron concentration is low.

Finally, a quite different area of physics might benefit from the approach proposed in this
paper. The resistively shunted junction model [26] of a Josephson junction is described by
an equation which is formally equivalent to (6). (The effective potentialU would be a sine
function in this case.) There are only few analytic results for this model, so a quantitative
study based on our approach would be interesting. At very least, the qualitative results of
this paper (apart from the parameter renormalization at the transition) fully correspond to
findings for Josephson junctions.
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Appendix. The effective potential for small polarons

In the adiabatic approximation, the Hamiltonian of small polarons with short-range electron–
phonon interaction and with dispersionless optical phonons reads [19, 28, 32]

H =
∑
m

(
1

2
Mω2

0x
2
m − γ xmnm

)
(A1)

whereγ is the electron–phonon coupling constant,M the reduced mass of the unit cell of
the crystal andxm the displacement of the nuclei from their equilibrium position (in the
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optical oscillation mode). Here, we obtain the effective potential without exploitation of
Legendre factors, by directly solving (3) and (4). We introduce the quantity〈nm〉, which
denotes the occupation number of sitem under the condition that the system energy is
minimal and the constraints (3) and (4) are fulfilled. Minimizing (A1) with respect to the
xm, we obtain

U(R) = −2Ea
∑
m

〈nm〉2 (A2)

where

Ea = γ 2

4Mω2
0

(A3)

denotes, as we will see below, the barrier height between neighbouring sites, and 2Ea is
the polaron shift.

The simplest way to obtain the minimum (A2) is to employ the two-site model, where
nm = 0 at all sites, except atm = 0 and 1. This approximation yields the following set of
equations forU(R):

U(R) = −2Ea(n
2
0+ n2

1) R = λn1 n0+ n1 = 1.

We finally obtain the expression for the effective potential:

U(R) = −2Ea + 4Ea
R

λ

(
1− R

λ

)
0< R < λ. (A4)

We note that, by applying the two-site model, the occupation numbersn0 andn1 of the sites
can in general be obtained without minimization, because the number of variables (n0, n1)
is equal to the number of constraints. Minimization is required for models in which three
or more sites are considered.

The potential obtained, equation (A4), does not contain the resonance integralJ , the
square of which is usually proportional to the hopping probability. The absence of the
resonance integral is due to the restriction to adiabatic transitions [28], where the gap
arising from level crossing of the adiabatic states, which is proportional toJ , is sufficiently
large. According to the theory of small polarons, adiabatic transitions occur if

J 2/(h̄ω0

√
EakT )� 1.

The pre-exponential factorJ 2/h̄
√
EakT for the transition probability of non-adiabatic

polarons is replaced byω0 for adiabatic polarons.
The approach used to obtainU(R) is very simple, because the deformation of the

localized electronic wave packet due to its displacement relative to the localization centre is
not taken into account. The consequent procedure using Legendre multipliers and solving
the corresponding Schrödinger equation in the adiabatic approximation is too complicated
to be practically feasible. Here, one only has to note that in the case where the localization
radius is smaller than the lattice constant (as is the case for small polarons), this effect
can have a significant influence onU(R). Specifically, an additional small dimensionless
parameter may be introduced: the ratio between the localization length and the lattice
constant (this equalsJ/Ea for small polarons). However, this will lead not to drastic
changes of the results presented in this paper, but merely to the numerical coefficientsA,
B, andC possibly becoming dependent on this small parameter.

The problem is easier in the case of a state for which the radius is larger than the lattice
constant. Then the deformation of the electronic wave packet due to its displacement relative
to the localization centre is small and the potential energy can be represented as a Fourier
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series with fast-decreasing terms, so thatU(R) = Ea cos(2πR/λ), and the barrier heightEa
is exponentially small compared to a large parameter, i.e. the ratio between the localization
length and the lattice constant. In this case there are actually only two parameters present,
the lattice constantλ and the activation energyEa, and the problem is formally equivalent
to the problem of the dynamics of Josephson vortices [26, 27].
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